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approach
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‡ Physics Department, University of Southern California, Los Angeles, CA 90089-0484, USA
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Abstract. We study boundary bound states using the Bethe ansatz formalism for the open
XXZ (1 > 1) chain in a boundary magnetic fieldh. Boundary bound states are represented by
the ‘boundary strings’ similar to those described in Skorik and Saleur. We find that for certain
values ofh the ground-state wavefunction contains boundary strings and from this infer the
existence of two ‘critical’ fields in agreement with Jimboet al. An expression for the vacuum
surface energy in the thermodynamic limit is derived and found to be an analytic function ofh.
We argue that boundary excitations appear only in pairs with ‘bulk’ excitations or with boundary
excitations at the other end of the chain. We mainly discuss the case where the magnetic fields
at the left and the right boundaries are antiparallel, but we also comment on the case of parallel
fields. In the Ising (1 = ∞) and isotropic (1 = 1) limits our results agree with those previously
known.

One-dimensional (1D) integrable quantum field theories with boundary interactions [3] have
been intensively studied recently because of their applications in condensed matter physics
(see, e.g., [4]). A powerful method for dealing with such problems is the Bethe ansatz, which
allows one to extract the basic physical properties from the system of coupled transcendental
equations. Among others, it allows one to solve the boundary sine–Gordon model via its
lattice regularization, the inhomogeneousXXZ (|1| < 1) chain in a boundary magnetic
field [1, 5].

In this paper we study theXXZ chain with an even number of spinsL in a boundary
magnetic field,

H = 1
2

{ L−1∑
i=1

(σ x
i σ x

i+1 + σ
y

i σ
y

i+1 + 1σz
i σ z

i+1) + h1σ
z
1 + h2σ

z
L

}
(1)

in the regime1 > 1, h1 > 0, h2 6 0, focusing on the effects peculiar to systems with
boundaries [6]. Ath1 = h2 = 0 this model describes a one-dimensional antiferromagnet
with non-magnetic impurities, which are accessible experimentally. We exploit the Bethe
ansatz solution for this model, which was first derived in [7], together with the well known
results for the periodic chain [8]. We find new ‘boundary string’ solutions to the Bethe
equations, similar to the boundary strings existing in the|1| < 1 regime [1]. For certain
values of the boundary magnetic field the ground-state configuration contains boundary
1-strings. Boundary excitations are obtained by removing (or adding, depending on the
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1630 A Kapustin and S Skorik

sign of h) boundary strings from the ground-state wavefunction. Their energy was first
obtained in [2] by the algebraic approach.

A peculiar feature of the Bethe ansatz solution of the periodic chain is that the excitations
(holes in the Dirac sea) appear only in pairs [9]. We argue that similarly the boundary
excitations can appear only in pairs with bulk excitations or with boundary excitations at
the other end of the spin chain. There is no such restriction in the solution of the semi-infinite
chain by the algebraic approach [2].

Using the Bethe ansatz solution we calculate the surface energy (see, e.g., [10]),

Esurf(L, 1, h) = Egr − E0
gr (2)

in the thermodynamic limitL = ∞. HereEgr is the ground-state energy of (1) andE0
gr is

that of the periodic chain. We give an interpretation of our results in the limits1 → ∞
and 1 → 1, corresponding to the 1D Ising andXXX models, respectively. Finally, we
comment on the structure of the ground state when the boundary magnetic fields are parallel.

Let us first set up the Bethe ansatz (BA) notations and list the relevant results about
the XXZ chain [7, 8]. In [7] the eigenstates of (1) were constructed for arbitrary1. As
usual in the BA picture, then-magnon eigenstates|n〉, satisfyingH|n〉 = E|n〉, are linear
combinations of the states withn spins down, located at sitesx1, . . . , xn:

|n〉 =
∑

f (n)(x1, . . . , xn)|x1, . . . , xn〉.
The wavefunction

f (x1, . . . , xn) =
∑
P

εP A(p1, . . . , pn)e
i(p1x1+···+pnxn) (3)

containsn parameterspj ∈ (0, π) which are subject to quantization conditions, called Bethe
equations (BE):

e2iLpj
eipj + h1 − 1

1 + (h1 − 1)eipj

eipj + h2 − 1

1 + (h2 − 1)eipj
=

n∏
l 6=j

ei8(pj ,pl). (4)

The summation in (3) is over all permutations and negations ofpj . The energy and spin of
the n-magnon state are given by [7]

E = 1
2[(L − 1)1 + h1 + h2] + 2

n∑
j=1

(cospj − 1) Sz = L

2
− n. (5)

It is convenient to rewrite BE using the following mappings,

1 = coshγ > 1 γ > 0 (6)

p = −i ln
cosh1

2(iα + γ )

cosh1
2(iα − γ )

(7)

(our definition ofp(α) differs from that of [8] by the shiftα → α + π and it was chosen
in such a way thatp(α) be an odd function that maps−π < α < π to −π < p < π),

h = coshγ + sinh 1
2γ (1 − H)

sinh 1
2γ (1 + H)

= sinhγ coth 1
2γ (H + 1) hlim < |h| < ∞ (8)

h = coshγ − cosh1
2γ (1 − H)

cosh1
2γ (1 + H)

= sinhγ tanh1
2γ (H + 1) |h| < hlim . (9)
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The latter two mappings are defined onH ∈ (−∞, ∞) and are necessary to cover the
region −∞ < h < ∞, with positive h corresponding toH ∈ (−1, ∞). The value
hlim ≡ h(∞) = sinhγ lies between two critical fieldsh(1)

cr , h(2)
cr defined as follows [2]:

h(1)
cr = 1 − 1 h(2)

cr = 1 + 1. (10)

Both critical fields correspond toH = 0 and the gaph(1)
cr < h < h(2)

cr corresponds to
0 < H < ∞. In these notations equation (4) becomes[

cosh1
2(iαj + γ )

cosh1
2(iαj − γ )

]2L

B(αj , H1)B(αj , H2)

=
∏
m6=j

sinh 1
2(iαj − iαm + 2γ ) sinh 1

2(iαj + iαm + 2γ )

sinh 1
2(iαj − iαm − 2γ ) sinh 1

2(iαj + iαm − 2γ )
(11)

where

B(α, H) = cosh1
2(iα + γH)

cosh1
2(iα − γH)

hlim < |h| < ∞ (12)

B(α, H) = sinh 1
2(iα + γH)

sinh 1
2(iα − γH)

|h| < hlim (13)

are called boundary terms. The energy equation (5) takes the form

E = 1
2[(L − 1) coshγ + h1 + h2] − 2 sinhγ

n∑
j=1

p′(αj ) p′(α) = sinhγ

coshγ + cosα
. (14)

In the thermodynamic limitL → ∞ the real rootsαj of BE form a dense distribution
in the open interval(0, π) with densityρ(α), dI = 2L(ρ + ρh) dα being the number of
roots in the interval dα. The logarithm of equation (11) is

2Lp(αj ) + 1

i
ln B(αj , H1) + 1

i
ln B(αj , H2) + φ(2αj )

=
n∑

l=1

φ(αj − αl) + φ(αj + αl) + 2πIj (15)

whereIj form an increasing sequence of positive integers, and

φ(α) = −i ln
sinh 1

2(2γ + iα)

sinh 1
2(2γ − iα)

φ(0) = 0. (16)

Taking the derivative of equation (11) and definingρ for negativeα by ρ(α) = ρ(−α), we
obtain

p′(α) + 1

2L
p′

bdry(α) =
∫ π

−π

φ′(α − β)ρ(β) dβ + 2π(ρ(α) + ρh(α)) (17)

with

p′
bdry(α) = −i

B ′(α, H1)

B(α, H1)
− i

B ′(α, H2)

B(α, H2)
+ 2φ′(2α) − 2πδ(α) − 2πδ(α − π). (18)

The presence of delta-functions in (18) is due to the fact thatαj = 0 andαj = π are always
solutions to (11), which should be excluded, since they make the wavefunction (3) vanish
identically [5].
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In equation (17) the ‘boundary terms’ are down by a factor 1/2L. Neglectingp′
bdry and

settingρh = 0, we obtain the equation for the ground-state density of the periodicXXZ

chain [11]. Solving it by the Fourier expansion

f (α) =
∞∑

l=−∞
f̂ (l)eilα f̂ (l) = 1

2π

∫ π

−π

f (α)e−ilα dα (19)

and using (14), we recover the result for the ground-state energy of the periodic chain [11]:

2πρ̂per(n) = p̂′(n)

1 + φ̂′(n)
φ̂′(n) = e−2γ |n| p̂′(n) = (−1)ne−γ |n| (20)

E0
gr = L1

2
− 2L sinhγ

∫ π

−π

ρper(α)p′(α) dα = L1

2
− L sinhγ

∞∑
n=−∞

e−γ |n|

coshγ n
. (21)

The spin of the ground state isSz = L/2− L
∫ π

−π
ρperdα = 0, which is a well known result

[11].
An elementary ‘bulk’ excitation above the vacuum in model (1) is a hole in the

distribution of Ij , but only a pair of holes can occur for the periodic chain, as argued
in [9]. Thus physical excitations contain an even number of holes. The energy of the hole
with rapidity θ can be easily computed,

εh(θ) = sinhγ

∞∑
n=−∞

(−1)neinθ

coshγ n
> 0 (22)

and the spin with respect to the vacuum isSz = 1/2. (Our result, equation (22), differs
from the conventional one by the shiftθ → θ +π , but the dispersion relation is unchanged
by rapidity reparametrization.)

Analogous arguments can be applied to analyse ‘bulk’ string solutions with complex
values ofα. Although there exists an infinite hierarchy of complex strings of arbitrary
length, and quartets, their energy vanishes with respect to the vacuum [12].

So far we have discussed the bulk excitations, which are essentially the same as in the
periodic chain. Let us now turn to the new solutions of equation (11): boundary strings. The
analysis is close to that of [1]. Boundary excitations have their wavefunction (3) localized
at the left or the right ends of the chain, and in the limitL → ∞ the two ends may
be considered separately. Let us first study the left boundary,h1 > 0. The fundamental
boundary 1-string consists of one root located atα0 = −iγH1 for 0 < h1 < h(1)

cr , and at
α0 = π − iγH1 for h(2)

cr < h1 < ∞ (in both cases−1 < H1 < 0). The string is a solution
of BE due to the mutual cancellation of the decreasing modulus of the first term in (11)
and the increasing modulus of the second termB(α, H1) asL → ∞ andα → α0. When
h(1)

cr < h1 < h(2)
cr , no such solution exists. Introduction of such a string into the vacuum

with the density of rootsρ(α) defined from

p′(α) + 1

2L
p′

bdry(α) =
∫ π

−π

φ′(α − β)ρ(β) dβ + 2πρ(α) (23)

leads to the redistribution of roots byδρ ≡ 2L(ρ̃ − ρ), whereρ̃ is the density of real roots
in the state with the boundary string.δρ satisfies an integral equation:

0 =
∫ π

−π

φ′(α − β)δρ(β) dβ + φ′(α − α0) + φ′(α + α0) + 2πδρ. (24)

From the latter we find

2πδρ̂(n) = −2 cosnα0e−2γ |n|

1 + e−2γ |n| . (25)
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The energy of the boundary 1-string with respect to this vacuum,ε̃b, is the difference between
the energy of the state with the string and the vacuum energy. Using equation (14), we
obtain

ε̃b = −2 sinhγp′(α0) − 2L sinhγ

∫ π

−π

(ρ̃ − ρ)p′(α) dα = − sinhγ

∞∑
n=−∞

(−1)neinα0

coshγ n
. (26)

Similarly, for the spin of the boundary string we obtainSz = −1/2. We see that the energy
(26) is negative, so the state described by the root densityρ is not the ground state. The
correct ground state wavefunction (3) should contain the boundary 1-string rootα0. The
ground-state densitỹρ in this case satisfies the equation

p′(α) + 1

2L
(p′

bdry(α) − φ′(α − α0) − φ′(α + α0))

=
∫ π

−π

φ′(α − β)ρ̃(β) dβ + 2πρ̃(α). (27)

The boundary excitation is obtained by removing from vacuum the rootα0, which means
that it has the energy−ε̃b > 0 and spin 1/2, equal to the spin of the bulk hole. Substituting
the value ofα0 into (26), we get the boundary excitation energy, which precisely agrees
with the one obtained in [2]:

εb(h1) = sinhγ

∞∑
n=−∞

(−1)κneγH1n

coshγ n
− 1 < H1 < 0 (28)

with κ = 1 if h1 < h(1)
cr andκ = 2 if h1 > h(2)

cr .
The above description of the ground state is valid when the boundary 1-string solution

exists, that is, whenh1 < h(1)
cr or h1 > h(2)

cr . When the boundary magnetic field approaches
h(1)

cr from below or h(2)
cr from above, the boundary string moves towards the real axis,

merging with the Dirac sea of real roots. In the regimeh(1)
cr < h1 < h(2)

cr the boundary
string solution is non-existent and the correct ground state contains only real roots, whose
densityρ is determined by equation (23). Thus in the Bethe ansatz picture the description
of the ground state changes discontinuously ath1 = h(1)

cr andh1 = h(2)
cr . We will see later,

however, that observable quantities (e.g., energy and spin) are continuous at these points.
Another conclusion is that the boundary bound state is present only forh1 < h(1)

cr and
h1 > h(2)

cr , in complete agreement with [2].
From (22) and (28) we see that forh1 < h(1)

cr the energy of the boundary excitation is
smaller than the bottom of the energy band of bulk excitations and becomes equal to it at
h1 = h(1)

cr (see figure 1). So in this regime we may interpret the boundary excitation as the
bound state of the kink, which gets unbound ath1 = h(1)

cr . For h1 > h(2)
cr the energy of the

boundary bound state is bigger than the top of the energy band. Therefore it is stable, in
spite of its huge energy.

Besides the fundamental boundary 1-string, there exists an infinite set of ‘long’ boundary
strings, consisting of rootsα0 − 2ikγ, α0 − 2i(k − 1)γ, . . . , α0 + 2niγ with n, k > 0. We
will call such solution an(n, k) boundary string (thus the fundamental boundary string
considered above is the (0,0) string). One can use the same arguments as given in [1]
to show that the(n, k) string is a solution of BE when its ‘centre of mass’ has positive
imaginary part and the lowest rootα0 − 2ikγ lies below the real axis. Thus, sufficiently
long boundary string solutions exist even in the regionh(1)

cr < h1 < h(2)
cr . However, a direct

calculation shows that their energy vanishes with respect to the vacuum, so they represent
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Figure 1. Full curve: a schematic plot of the energy of the boundary excitation,εb(h), as a
function of the boundary magnetic fieldh. Shaded area: the energy band of the bulk excitations.

charged vacua†. (An analogous phenomenon occurs for the ‘long’ strings in the bulk [12]:
if the imaginary part ofα lies outside the strip−2γ < Imα < 2γ , the rootα gives no
contribution to the energy.) For 0< h1 < h(1)

cr andh(2)
cr < h1 < ∞, the (n, 0) strings also

represent charged vacua, while(n, k) strings withk > 1 have the same energy (28) as the
boundary bound state found above, and hence represent charged boundary excitations‡.

Consider now the right boundary,h2 < 0 (H2 < −1). Now the fundamental boundary
1-string solutionα0 = −iγH2 exists for any value ofh2 in the interval−hlim < h2 < 0
(respectivelyα0 = π − iγH2 for h2 < −hlim). Explicit calculation shows that it has
non-vanishing energy only if−2 < H2 < −1, which corresponds to−h(1)

cr < h2 < 0
(respectivelyh2 < −h(2)

cr ). For such values ofh2, the energy of the 1-string with respect
to the vacuum (23) is positive and equal toεb(−h2) (see equation (28)) and its spin is
Sz = −1/2. In some sense the pictures are dual for the positive and negativeh cases:
there exist two states when|h| is not between|h(1)

cr | and |h(2)
cr |, one with boundary 1-string

and one without. One of them is the ground state and another is the excited state at the
boundary, and these states exchange their roles when the sign ofh changes. The analysis
of long boundary strings is very similar to that at the left boundary, and therefore will
be omitted. The net result is again that long boundary strings represent charged vacua or
charged boundary excitations.

In all examples shown above, the charge of boundary excitations turned out to be
half-integer. One can easily check that this is true for all boundary strings representing
charged excitations. Since the charge of physical excitations is obviously restricted to be

† As an example, consider the boundary (1,0) string consisting of the rootsα0+2iγ, α0. It exists if−1 < H1 < 1,
although the (0,0) string exists only if−1 < H1 < 0. The (1,0) string has chargeSz = −1 and vanishing energy
with respect to the vacuum.
‡ For example, the (1,1) string with rootsα0 + 2iγ, α0, α0 − 2iγ hasSz = −3/2 and energy given by (28) with
respect to the physical vacuum.
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an integer (see (5)), we conclude that a boundary excitation can only appear paired with
the bulk excitation of half-integer charge (i.e. containing an odd number of holes) or with
a boundary excitation at the other end of the chain. We give a qualitative interpretation of
this fact below.

To compute the vacuum surface energy, equation (2), of model (1), one should use
equation (14) in the limitL = ∞ with the root density determined from equations (23)
or (27) and the boundary terms (12) or (13), depending on the value ofh. Define for
convenience

g(1) = 1

2
+ 2 sinhγ

∞∑
n=1

e−2nγ − 1

cosh 2nγ
. (29)

We consider separately the following intervals for positiveh1 and negativeh2.
(i) |h1,2| < h(1)

cr . The ground state contains one boundary 1-string, corresponding toh1.
The spin of the ground state can be found to beSz = 0. Using equations (13), (18) and
(27), and subtracting the bulk contribution (21), we get

Esurf = 1
2(h1 + h2) − g(1) − sinhγ

∞∑
n=1

(−1)n
e−γH1n − eγH2n

coshγ n
. (30)

(ii) |h1,2| > h(2)
cr . The ground state contains one boundary 1-string and hasSz = 0.

From equations (12) and (27) it follows

Esurf = 1
2(h1 + h2) − g(1) − sinhγ

∞∑
n=1

e−γH1n − eγH2n

coshγ n
. (31)

(iii) h(1)
cr < |h1,2| < hlim. The ground state has no boundary strings and its spin is zero.

From (23) and (13) one obtains the same expression as in case (i).
(iv) hlim < |h1,2| < h(2)

cr . From (23) and (12) one obtains the same expression as in
case (ii). The ground state has the same structure as in case (iii).

A qualitative plot of the surface energy as a function ofh (h = h1 = −h2) is given in
figure 2. The apparent difference between (30) and (31) is an artefact of our parametrization
of h in terms ofH . In fact, Esurf is an analytic function ofh in the domainh ∈ (0, ∞),
which can be seen after substitutingH as a function ofh according to (8) and (9). In this
sense the fieldsh(1,2)

cr are not actually ‘critical.’ We find forh1 = h2 = 0 the value

Esurf = −1

2
+ 4 sinhγ

(
1

4
+

∞∑
n=1

e2nγ − 1

1 + e4nγ
+

∞∑
n=1

(−1)n

1 + e2nγ

)
. (32)

Note that one can obtain the boundary magnetization〈σ z
1〉 [2] immediately from the formula

for the surface energy (30) and (31) by differentiating with respect toh1.
In the extreme anisotropic limit1 → ∞, h ∼ 1 of the XXZ chain (1) one gets the

one-dimensional Ising model:

H = 1
2

{ L−1∑
i=1

1σz
i σ z

i+1 + h1σ
z
1 + h2σ

z
L

}
. (33)

In this limit from (8) and (9) one has

h ≈ 1 ± e−γH (34)

and the gap betweenh(1)
cr andh(2)

cr disappears, so for anyh there exists a boundary bound
state. The energy of the ‘bulk’ hole (22) becomesθ -independent and equal to1, since only
the n = 0 term contributes to the sum whenγ → ∞. The energy of the boundary bound
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Figure 2. A schematic plot of the vacuum surface energy as a function of the boundary magnetic
field h = h1 = −h2.

state (28) becomesεb = 1 ± e−γH1 = h1. This suggests the following interpretation in
terms of the Ising chain. In the Ising ground state theith spin has the value(−1)i . Local
bulk excitation of the smallest energy 21 can be obtained by flipping one spin (the first and
last spins excepted). The arising two surfaces (domain walls) separating the flipped spin
from its right and left neighbours are called kinks and carry the energy1 each. A kink
corresponds to a hole in the Bethe ansatz picture and kinks obviously appear only in pairs,
which demonstrates that holes can exist only in pairs, too. The charge of the one-spin-
flipped state is equal to one, in agreement with the charge of two holes in BA. In addition
to charge one excitation, one has charge zero excitation of the same energy obtained by
flipping any even number of spins in a row. In the BA this corresponds to the ‘two holes
and 2-string’ state. In the Ising model the left (right) boundary bound state is obtained by
flipping the first (last) spin. Such a state has the energyh1 + 1 above the vacuum energy,
whereh1 is the contribution of the boundary term in (33) and1 is the energy of the kink
created due to the boundary–bulk interaction. Thus flipping the boundary spin actually
gives a combination of the boundary excitation and the bulk kink. Still another possibility
is to flip all spins, creating two boundary bound states, one at each boundary. This explains
why, in the BA picture, a boundary excitation can exist only if paired with a hole in the
Dirac sea or with another boundary excitation. The vacuum surface energy (2) of the Ising
chain in the thermodynamic limit is(1−h1 +h2)/2. The1/2 contribution here is the bulk
interaction energy that we lost when we disconnected the periodic chain and±h1,2/2 is the
contribution of each of the boundary terms. Taking the limitγ → ∞ in equations (30) and
(31), we obtain the expected resultEsurf → (1 − h1 + h2)/2.

In the isotropic (rational) limit1 → 1 (i.e. γ → 0) one gets theXXX chain in a
boundary magnetic field, which was discussed in the BA framework in [13] for 0< h1,2 < 2.
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From (8) and (9) one has in the limit

h = 2

1 + H
. (35)

There is only one critical fieldhcr = 2, which is the limit ofh(2)
cr . Passing from summation

to integration in equation (31), we obtain for 0< h1 < ∞, 0 < −h2 < ∞,

Esurf = 1

2
(h1 + h2) − 1

2
+ π

2
−

∫ ∞

0
dx

e−(2/h1−1)x − e(2/h2−1)x + e−x

coshx

= 1

2
(h1 − h2) − 1

2
+ π

2
−

∫ ∞

0
dx

e−(2/h1−1)x + e(2/h2+1)x + e−x

coshx
(36)

where the second line was obtained from the first one after a simple manipulation. This
agrees with the results of [13]. Forh1 = h2 = 0 one has from (36)Esurf = (π −1)/2− ln 2.

Another aspect is the structure of the ground state in the regimeh1,2 > 0. Assuming
that, for example, forh1,2 > h(2)

cr the ground state contains both left and right boundary
1-strings to minimize the energy, we end up, after a short calculation, with a half-integer
spin for the vacuum, which signals that such a state cannot, in fact, be the vacuum. Hence,
the ground state must have a more intricate structure. Appealing to the Ising limitγ → ∞,
one sees that forh1,2 > 1 the ground state must have both boundary spins directed opposite
to the magnetic field and, therefore, contain a kink in the bulk (recall thatL is even). On
the other hand, forh1,2 < 1 the lowest energy configuration is such that the boundary spins
are antiparallel, which means that the physical vacuum contains what was once called a
boundary excitation at one of the ends. This suggests that for finite1 the correct ground-
state wavefunction of the Hamiltonian (1) should contain a bulk hole with the minimal
possible energy (i.e. the kink with zero rapidityθ = 0) and both boundary 1-strings when
h1,2 > h(2)

cr . Such a state has zero spin. Changing the rapidity of this stationary kink away
from zero, one obtains in such a way an excited state whose energy can be arbitrarily close
to the vacuum state, which means that there is a new gapless branch in the spectrum†.
Similarly, whenh(1)

cr < h1,2 < h(2)
cr , for the ground state to have the integer charge it should

also contain a kink in the bulk. Whenh1,2 < h(1)
cr the physical vacuum contains only one of

the two boundary 1-strings and no stationary kink in the bulk (whenh1 = h2 there are two
possibilities of having either left or right boundary 1-string in the vacuum, corresponding
to the obvious two-fold degeneracy of the Ising ground state in this case). Such a state has
a smaller energy forh1,2 < h(1)

cr than the state with a hole in the bulk and two boundary
strings, whereas forh1,2 > h(2)

cr the state with the bulk hole is energetically preferable, since
in this caseεb > εh (see figure 2 and [2]). This situation is in some sense analogous to
the case of the periodic antiferromagneticXXZ chain with oddL, where the ground state
contains a kink. According to the above discussion the surface energy in the caseh1,2 > hlim

is

Esurf = 1

2
(h1 + h2) − g(1) + εh(0) − sinhγ

(
1 +

∞∑
n=1

e−γH1n + e−γH2n

coshγ n

)
. (37)

In the rational (γ → 0) limit εh(0) vanishes and equation (37) becomes

Esurf = 1

2
(h1 + h2) − 1

2
+ π

2
−

∫ ∞

0
dx

e−(2/h1−1)x + e−(2/h2−1)x + e−x

coshx
. (38)

This expression agrees with the one obtained in [13]. Note that the authors of [13] obtained
equation (38) under the assumption that 0< h1,2 < hcr, whereas our derivation shows that

† In the Ising limitγ → ∞ the energy of the kink is independent of rapidity and, therefore, this branch degenerates
to the vacuum.
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this result is valid for 0< h1,2 < ∞. In the Ising limit equation (37) gives the correct
resultEsurf = (31 − h1 − h2)/2. Observe that for theXXX chain the following equality
holds (see (36) and (38)):Esurf(h1, h2) = Esurf(h1, −h2). This is a consequence of the
decompositionEsurf = f (h1) + f (h2) + constant, which takes place in the limitL = ∞
when two boundaries are independent, and the obvious property of the semi-infinite chain
f (−h) = f (h). The same statements are true for the surface energy ofXXZ chain apart
from theεh(0) contribution (see (37)).

We would like also to mention that within the BA technique it is also possible to
calculate the boundaryS-matrix for the scattering of kinks (represented by holes in the
Dirac sea) in the ground state of the Hamiltonian (1) or in the excited boundary state. Such
a calculation has been performed in [13] for the boundaryXXX chain and in [1, 5] for the
boundary sine–Gordon model. For the boundaryXXZ chain theseS-matrices have been
obtained by Jimboet al [2] in the algebraic approach.
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